Sabtu, 12 Juni 2010

Dimensi Besaran

Dimensi besaran diwakili dengan simbol, misalnya M, L, T yang mewakili massa (mass), panjang (length) dan waktu (time). Ada dua macam dimensi yaitu Dimensi Primer dan Dimensi Sekunder. Dimensi Primer meliputi M (untuk satuan massa), L (untuk satuan panjang) dan T (untuk satuan waktu). Dimensi Sekunder adalah dimensi dari semua Besaran Turunan yang dinyatakan dalam Dimensi Primer. Contoh : Dimensi Gaya : M L T-2 atau dimensi Percepatan : L T-2Catatan :

Semua besaran dalam mekanika dapat dinyatakan dengan tiga besaran pokok (Dimensi Primer) yaitu panjang, massa dan waktu. Sebagaimana terdapat Satuan Besaran Turunan yang diturunkan dari Satuan Besaran Pokok, demikian juga terdapat Dimensi Primer dan Dimensi Sekunder yang diturunkan dari Dimensi Primer.

Berikut adalah tabel yang menunjukkan dimensi dan satuan tujuh besaran dasar dalam sistem SI.

Manfaat Dimensi dalam Fisika antara lain : (1) dapat digunakan untuk membuktikan dua besaran sama atau tidak. Dua besaran sama jika keduanya memiliki dimensi yang sama atau keduanya termasuk besaran vektor atau skalar, (2) dapat digunakan untuk menentukan persamaan yang pasti salah atau mungkin benar, (3) dapat digunakan untuk menurunkan persamaan suatu besaran fisis jika kesebandingan besaran fisis tersebut dengan besaran-besaran fisis lainnya diketahui.

Satuan dan dimensi suatu variabel fisika adalah dua hal berbeda. Satuan besaran fisis didefinisikan dengan perjanjian, berhubungan dengan standar tertentu (contohnya, besaran panjang dapat memiliki satuan meter, kaki, inci, mil, atau mikrometer), namun dimensi besaran panjang hanya satu, yaitu L. Dua satuan yang berbeda dapat dikonversikan satu sama lain (contohnya: 1 m = 39,37 in; angka 39,37 ini disebut sebagai faktor konversi), sementara tidak ada faktor konversi antarlambang dimensi.

ANALISIS DIMENSI

Analisis dimensi adalah cara yang sering dipakai dalam fisika, kimia dan teknik untuk memahami keadaan fisis yang melibatkan besaran yang berbeda-beda. Analisis dimensi selalu digunakan untuk memeriksa ketepatan penurunan persamaan. Misalnya, jika suatu besaran fisis memiliki satuan massa dibagi satuan volume namun persamaan hasil penurunan hanya memuat satuan massa, persamaan tersebut tidak tepat. Hanya besaran-besaran berdimensi sama yang dapat saling ditambahkan, dikurangkan atau disamakan. Jika besaran-besaran berbeda dimensi terdapat di dalam persamaan dan satu sama lain dibatasi tanda “+” atau “-” atau “=”, persamaan tersebut harus dikoreksi terlebih dahulu sebelum digunakan. Jika besaran-besaran berdimensi sama maupun berbeda dikalikan atau dibagi, dimensi besaran-besaran tersebut juga terkalikan atau terbagi. Jika besaran berdimensi dipangkatkan, dimensi besaran tersebut juga dipangkatkan.

Seringkali kita dapat menentukan bahwa suatu rumus salah hanya dengan melihat dimensi atau satuan dari kedua ruas persamaan. Sebagai contoh, ketika kita menggunakan rumus A= 2.Phi.r untuk menghitung luas. Dengan melihat dimensi kedua ruas persamaan, yaitu [A] = L2 dan [2.phi.r] = L kita dengan cepat dapat menyatakan bahwa rumus tersebut salah karena dimensi kedua ruasnya tidak sama. Tetapi perlu diingat, jika kedua ruas memiliki dimensi yang sama, itu tidak berarti bahwa rumus tersebut benar. Hal ini disebabkan pada rumus tersebut mungkin terdapat suatu angka atau konstanta yang tidak memiliki dimensi, misalnya Ek = 1/2 mv2 , di mana 1/2 tidak bisa diperoleh dari analisis dimensi.

Anda harus ingat karena dalam suatu persamaan mungkin muncul angka tanpa dimensi, maka angka tersebut diwakili dengan suatu konstanta tanpa dimensi, misalnya konstanta k.

Contoh Soal : menentukan dimensi suatu besaran

Tentukan dimensi dari besaran-besaran berikut ini : (a) volum, (b) massa jenis, (c) percepatan, (d) usaha

Anda harus menulis rumus dari besaran turunan yang akan ditentukan dimensinya terlebih dahulu. Selanjutnya rumus tersebut diuraikan sampai hanya terdiri dari besaran pokok.

Jawaban :

(a) Persamaan Volum adalah hasil kali panjang, lebar dan tinggi di mana ketiganya memiliki dimensi panjang, yakni [L]. Dengan demikian, Dimensi Volume :

(b) Persamaan Massa Jenis adalah hasil bagi massa dan volum. Massa memiliki dimensi [M] dan volum memiliki dimensi [L]3. Dengan demikian Dimensi massa jenis :

(c) Persamaan Percepatan adalah hasil bagi Kecepatan (besaran turunan) dengan Waktu, di mana Kecepatan adalah hasil bagi Perpindahan dengan Waktu. Oleh karena itu, kita terlebih dahulu menentukan dimensi Kecepatan, kemudian dimensi Percepatan.

(d) Persamaan Usaha adalah hasil kali Gaya (besaran Turunan) dan Perpindahan (dimensi = [L]), sedang Gaya adalah hasil kali massa (dimensi = [M]) dengan percepatan (besaran turunan). Karena itu kita tentukan dahulu dimensi Percepatan (lihat (c)), kemudian dimensi Gaya dan terakhir dimensi Usaha.

Gerak Harmonik Sederhana

Pengantar

Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar. Senar gitar yang sering anda main atau dimainkan oleh gitaris group band musik terkenal yang kadang membuat anda menjerit histeris bahkan sampai menangis tersedu-sedu, getaran garpu tala, getaran mobil ketika mesinnya dinyalakan atau ketika mobil mencium mobil lainnya hingga penumpangnya babak belur. Ingat juga ketika anda tertawa terpingkal-pingkal tubuh anda juga bergetar, demikian juga rumah anda yang bergetar dasyat hingga ambruk ketika terjadi gempa bumi. Sangat banyak contoh getaran dalam kehidupan kita, sehingga jika disebutkan satu persatu maka tentu sangat melelahkan. Silahkan dipikirkan sendiri contoh lainnya.

Getaran dan gelombang merupakan dua hal yang saling berkaitan. Gelombang, baik itu gelombang air laut, gelombang gempa bumi, gelombang suara yang merambat di udara; semuanya bersumber pada getaran. Dengan kata lain, getaran adalah penyebab adanya gelombang. Mengenai gelombang, selengkapnya akan kita pelajari pada pokok bahasan tersendiri. Sekarang terlebih dahulu kita pelajari pokok bahasan getaran. Semoga setelah mempelajari getaran, dirimu tidak ikut bergetar, apalagi ketika gurumu menyajikan soal-soal hitungan yang membuat dirimu mabuk kepayang.

GERAK HARMONIK

Setiap gerak yang terjadi secara berulang dalam selang waktu yang sama disebut gerak periodik. Karena gerak ini terjadi secara teratur maka disebut juga sebagai gerak harmonik/harmonis. Apabila suatu partikel melakukan gerak periodik pada lintasan yang sama maka geraknya disebut gerak osilasi/getaran. Bentuk yang sederhana dari gerak periodik adalah benda yang berosilasi pada ujung pegas. Karenanya kita menyebutnya gerak harmonis sederhana. Banyak jenis gerak lain (osilasi dawai, roda keseimbangan arloji, atom dalam molekul, dan sebagainya) yang mirip dengan jenis gerakan ini, sehingga pada kesempatan ini kita akan membahasnya secara mendetail.

Dalam kehidupan sehari-hari, gerak bolak balik benda yang bergetar terjadi tidak tepat sama karena pengaruh gaya gesekan. Ketika kita memainkan gitar, senar gitar tersebut akan berhenti bergetar apabila kita menghentikan petikan. Demikian juga bandul yang berhenti berayun jika tidak digerakan secara berulang. Hal ini disebabkan karena adanya gaya gesekan. Gaya gesekan menyebabkan benda-benda tersebut berhenti berosilasi. Jenis getaran seperti ini disebut getaran harmonik teredam. Walaupun kita tidak dapat menghindari gesekan, kita dapat meniadakan efek redaman dengan menambahkan energi ke dalam sistem yang berosilasi untuk mengisi kembali energi yang hilang akibat gesekan, salah satu contohnya adalah pegas dalam arloji yang sering kita pakai. Pada kesempatan ini kita hanya membahas gerak harmonik sederhana secara mendetail, karena dalam kehidupan sehari-hari terdapat banyak jenis gerak yang menyerupai sistem ini.

GERAK HARMONIS SEDERHANA

Gerak harmonis sederhana yang dapat dijumpai dalam kehidupan sehari-hari adalah getaran benda pada pegas dan getaran benda pada ayunan sederhana. Kita akan mempelajarinya satu persatu.

Gerak Harmonis Sederhana pada Ayunan

Ketika beban digantungkan pada ayunan dan tidak diberikan gaya maka benda akan diam di titik kesetimbangan B. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana.

Besaran fisika pada Gerak Harmonik Sederhana pada ayunan sederhana

Periode (T)

Benda yang bergerak harmonis sederhana pada ayunan sederhana memiliki periode alias waktu yang dibutuhkan benda untuk melakukan satu getaran secara lengkap. Benda melakukan getaran secara lengkap apabila benda mulai bergerak dari titik di mana benda tersebut dilepaskan dan kembali lagi ke titik tersebut.

Pada contoh di atas, benda mulai bergerak dari titik A lalu ke titik B, titik C dan kembali lagi ke B dan A. Urutannya adalah A-B-C-B-A. Seandainya benda dilepaskan dari titik C maka urutan gerakannya adalah C-B-A-B-C.

Jadi periode ayunan (T) adalah waktu yang diperlukan benda untuk melakukan satu getaran (disebut satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dan kembali lagi ke titik tersebut ). Satuan periode adalah sekon atau detik.

Frekuensi (f)

Selain periode, terdapat juga frekuensi alias banyaknya getaran yang dilakukan oleh benda selama satu detik. Yang dimaksudkan dengan getaran di sini adalah getaran lengkap. Satuan frekuensi adalah 1/sekon atau s-1. 1/sekon atau s-1 disebut juga hertz, menghargai seorang fisikawan. Hertz adalah nama seorang fisikawan tempo doeloe. Silahkan baca biografinya untuk mengenal almahrum eyang Hertz lebih dekat.

Hubungan antara Periode dan Frekuensi

Frekuensi adalah banyaknya getaran yang terjadi selama satu detik/sekon. Dengan demikian selang waktu yang dibutuhkan untuk melakukan satu getaran adalah :

Selang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara matematis hubungan antara periode dan frekuensi adalah sebagai berikut :

Amplitudo (f)

Pada ayunan sederhana, selain periode dan frekuensi, terdapat juga amplitudo. Amplitudo adalah perpindahan maksimum dari titik kesetimbangan. Pada contoh ayunan sederhana sesuai dengan gambar di atas, amplitudo getaran adalah jarak AB atau BC.

Gerak Harmonis Sederhana pada Pegas

Semua pegas memiliki panjang alami sebagaimana tampak pada gambar a. Ketika sebuah benda dihubungkan ke ujung sebuah pegas, maka pegas akan meregang (bertambah panjang) sejauh y. Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang), sebagaimana tampak pada gambar B. Jika beban ditarik ke bawah sejauh y1 dan dilepaskan (gambar c), benda akan akan bergerak ke B, ke D lalu kembali ke B dan C. Gerakannya terjadi secara berulang dan periodik. Sekarang mari kita tinjau hubungan antara gaya dan simpangan yang dialami pegas.

Kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.

Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :

F = -kx

Persamaan ini sering dikenal sebagai hukum hooke dan dicetuskan oleh paman Robert Hooke. k adalah konstanta dan x adalah simpangan. Hukum Hooke akurat jika pegas tidak ditekan sampai kumparan pegas bersentuhan atau diregangkan sampai batas elastisitas. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan kaku atau lembut sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin lembut sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Pegas dapat bergerak jika terlebih dahulu diberikan gaya luar. Amati bahwa besarnya gaya bergantung juga pada besar x (simpangan).

Sekarang mari kita tinjau lebih jauh apa yang terjadi jika pegas diregangkan sampai jarak x = A, kemudian dilepaskan (lihat gambar di bawah).

Setelah pegas diregangkan, pegas menarik benda kembali ke posisi setimbang (x=0). Ketika melewati posisi setimbang, benda bergerak dengan laju yang tinggi karena telah diberi percepatan oleh gaya pemulih pegas. Ketika bergerak pada posisi setimbang, gaya pegas = 0, tetapi laju benda maksimum.Karena laju benda maksimum maka benda terus bergerak ke kiri. Gaya pemulih pegas kembali memperlambat gerakan benda sehingga laju benda perlahan-lahan menurun dan benda berhenti sejenak ketika berada pada x = -A. Pada titik ini, laju benda = 0, tetapi gaya pegas bernilai maksimum, di mana arahnya menuju ke kanan (menuju posisi setimbang).

Benda tersebut bergerak kembali ke kanan menuju titik setimbang karena ditarik oleh gaya pemulih pegas tadi. Gerakan benda ke kanan dan ke kiri berulang secara periodik dan simetris antara x = A dan x = -A.

Besaran fisika pada Gerak Harmonik Sederhana pada pegas pada dasarnya sama dengan ayunan sederhana, yakni terdapat periode, frekuensi dan amplitudo. Jarak x dari posisi setimbang disebut simpangan. Simpangan maksimum alias jarak terbesar dari titik setimbang disebut amplitudo (A). Satu getaran Gerak Harmonik Sederhana pada pegas adalah gerak bolak balik lengkap dari titik awal dan kembali ke titik yang sama. Misalnya jika benda diregangkan ke kanan, maka benda bergerak mulai dari titik x = 0, menuju titik x = A, kembali lagi ke titik x = 0, lalu bergerak menuju titik x = -A dan kembali ke titik x = 0 (bingung-kah ? ;) ). Dipahami perlahan-lahan ya…

Bagaimana osilasi pada pegas yang digantungkan secara vertikal ?

Pada dasarnya osilasi alias getaran dari pegas yang digantungkan secara vertikal sama dengan getaran pegas yang diletakan horisontal. Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang bekerja pada benda. Mari kita tinjau lebih jauh getaran pada pegas yang digantungkan secara vertikal…

Pada pegas yang kita letakan horisontal (mendatar), posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar (ditarik atau ditekan). Nah, pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang.

Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas (F0 = -kx0) yang arahnya ke atas dan gaya berat (w = mg) yang arahnya ke bawah. Total kedua gaya ini sama dengan nol.

Gurumuda tetap menggunakan lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Dirimu dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam alias tidak bergerak.

Jika kita meregangkan pegas (menarik pegas ke bawah) sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang (perhatikan gambar c di bawah).Total kedua gaya ini tidak sama dengan nol karena terdapat pertambahan jarak sejauh x; sehingga gaya pegas bernilai lebih besar dari gaya berat. Karena terdapat gaya pegas (gaya pemulih) yang berarah ke atas maka benda akan bergerak ke atas menuju titik setimbang. (sambil lihat gambar di bawah ya).Pada titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum (v maks), sehingga benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang (lihat gambar di bawah). Demikian seterusnya. Benda akan bergerak ke bawah dan ke atas secara periodik. Dalam kenyataannya, pada suatu saat tertentu pegas tersebut berhenti bergerak karena adanya gaya gesekan udara.Semua benda yang bergetar di mana gaya pemulih F berbanding lurus dengan negatif simpangan (F = -kx), maka benda tersebut dikatakan melakukan gerak harmonik sederhana (GHS) atau Osilasi Harmonik Sederhana (OHS).

Contoh soal 1 :

Sebuah benda digantungkan pada sebuah tali yang digantung vertikal. Benda tersebut ditarik ke samping dan dilepaskan sehingga benda bergerak bolak balik di antara dua titik terpisah sejauh 20 cm. Setelah 20 detik dilepaskan, benda melakukan getaran sebanyak 40 kali. Hitunglah frekuensi, periode dan amplitudo getaran benda tersebut.

Panduan jawaban :

a) Frekuensi adalah banyaknya getaran yang dilakukan benda selama satu detik. Benda melakukan getaran sebanyak 40 kali selama 20 detik. Dengan demikian, selama 1 detik benda tersebut melakukan getaran sebanyak 2 kali (40 / 20).

b) Periode adalah waktu yang dibutuhkan untuk melakukan satu getaran (T).

T = 1/f = ½ = 0,5 sekon

Jadi benda melakukan satu getaran selama 0,5 detik.

c) Amplitudo adalah simpangan maksimum diukur dari titik keseimbangan. Karena benda bergerak bolak balik alias melakukan getaran di antara dua titik terpisah sejauh 20 cm, maka amplitudo getaran benda adalah setengah dari lintasan yang dilalui benda tersebut. Dengan demikian, amplitudo = ½ (20 cm) = 10 cm

Contoh soal 2 :

Sebuah benda digantungkan pada sebuah pegas dan berada pada titik kesetimbangan. Benda tersebut ditarik ke bawah sejauh 5 cm dan dilepaskan. Jika benda melalui titik terendah sebanyak 10 kali selama 5 detik, tentukanlah frekuensi, periode dan amplitudo getaran benda tersebut.

Panduan jawaban :

a) Frekuensi

Frekuensi adalah banyaknya getaran yang dilakukan benda selama satu detik. Pada soal dikatakan bahwa benda tersebut melewati titik terendah sebanyak 10 kali selama 5 detik. Agar benda bisa melewati titik terendah maka benda tersebut pasti melakukan getaran (gerakan bolak balik dari titik terendah menuju titik tertinggi dan kembali lagi ke titik terendah). Karena benda melewati titik terendah sebanyak 10 kali selama 5 detik maka dapat dikatakan bahwa benda melakukan getaran sebanyak 10 kali selama 5 detik. Dengan demikian, selama 1 detik benda tersebut melakukan getaran sebanyak 2 kali (10 / 5).

b) Periode

Periode adalah waktu yang dibutuhkan untuk melakukan satu getaran (T).

T = 1/f = ½ = 0,5 sekon

Jadi benda melakukan satu getaran selama 0,5 detik.

c) Amplitudo adalah simpangan maksimum diukur dari titik keseimbangan. Pada soal di atas, amplitudo getaran benda adalah 5 cm

Contoh soal 3 :

Sebuah sedan bermassa 1200 kg ditumpangi 3 orang yang memiliki massa total 200 kg. Pegas mobil tersebut tertekan sejauh 5 cm. Anggap saja percepatan gravitasi = 10 m/s2

Hitunglah :

a) konstanta pegas mobil tersebut

b) berapa jauh pegas sedan tersebut tertekan jika sedan dinaiki 4 orang dan bagasinya dipenuhi dengan muatan sehingga total massa adalah 300 kg ?

Panduan jawaban :

Pegas sedan mulai tertekan ketika dimuati beban bermassa 200 kg. Dengan demikian massa sedan tidak disertakan dalam perhitungan, karena ketika sedan tidak dimuati beban, pegas sedan berada pada posisi setimbang.

a) konstanta pegas

k = F/x = (200 kg)(10 m/s2) / (5 x 10-2 m) = …. lanjUtkaN!

b) apabila sedan dimuati beban bermassa 300 kg, maka

x = F/k = (300 kg)(10 m/s2) / (4 x 104 N/m) = ….lanjUtk

Gelombang Elektromagnetik

Siapakah Cristiano Ronaldo? Atau, siapakah vokalis band Peter Pan? Jika kamu dihadapkan pada pertanyaan semacam itu dapat dipastikan kamu bisa menjawabnya, bukan? Siapa yang tidak kenal CR7 (sebutan buat Cristiano Ronaldo) atau Ariel Peter Pan? Walaupun kamu tidak pernah bertemu secara langsung dengan keduanya, kamu pasti kenal dengan mereka, ya kan? Kok bisa ya! Walaupun kamu tidak pernah bertemu dengan mereka kamu pasti sering melihat mereka melalui TV, bukan begitu? Sekarang, apa yang membuat kamu bisa menonton TV untuk melihat pertandingan sepak bola yang sedang berlangsung di tempat lain yang sangat jauh? Tahukah kamu prinsip dan konsep apa yang melandasi teknologi dan fenomena ini?

man_w_mobilephoneSaat ini hampir semua orang memiliki peralatan yang satu ini. Dia begitu kecil yang bisa dengan nyaman diletakkan di dalam saku, namun dianggap memiliki fungsi yang sangat besar terutama untuk berkomunikasi. Ya, benda itu adalah sebuah ponsel (telepon seluler). Saat ini ponsel tidak hanya digunakan untuk menelpon saja tetapi juga untuk fungsi lain seperti mengirim dan menerima pesan singkat (sms), mendengarkan musik, atau mengambil foto. Bagaimana perangkat ponsel dapat terhubung dengan perangkat ponsel yang lain padahal mereka saling berjauhan?

Konsep yang bisa menjelaskan fenomena ini adalah konsep gelombang elektromagnetik. Dan, konsep gelombang elektromagnetik ternyata sangat luas tidak hanya berkaitan dengan TV atau ponsel saja, melainkan banyak aplikasi lain yang bisa sering kita temukan sehari-hari di sekitar kita. Aplikasi tersebut meliputi microwave, radio, radar, atau sinar-x.

Sebagaimana yang telah dibahas sebelumnya bahwa ada dua hukum dasar yang menghubungkan gejala kelistrikan dan kemagnetan.

Pertama, arus listrik dapat menghasilkan (menginduksi) medan magnet. Ini dikenal sebagai gejala induksi magnet. Peletak dasar konsep ini adalah Oersted yang telah menemukan gejala ini secara eksperimen dan dirumuskan secara lengkap oleh Ampere. Gejala induksi magnet dikenal sebagai Hukum Ampere.

Michael Faraday, penemu induksi elektromagnetik

Michael Faraday, penemu induksi elektromagnetik

Kedua, medan magnet yang berubah-ubah terhadap waktu dapat menghasilkan (menginduksi) medan listrik dalam bentuk arus listrik. Gejala ini dikenal sebagai gejala induksi elektromagnet. Konsep induksi elektromagnet ditemukan secara eksperimen oleh Michael Faraday dan dirumuskan secara lengkap oleh Joseph Henry. Hukum induksi elektromagnet sendiri kemudian dikenal sebagai Hukum Faraday-Henry.

Dari kedua prinsip dasar listrik magnet di atas dan dengan mempertimbangkan konsep simetri yang berlaku dalam hukum alam, James Clerk Maxwell mengajukan suatu usulan. Usulan yang dikemukakan Maxwell, yaitu bahwa jika medan magnet yang berubah terhadap waktu dapat menghasilkan medan listrik maka hal sebaliknya boleh jadi dapat terjadi. Dengan demikian Maxwell mengusulkan bahwa medan listrik yang berubah terhadap waktu dapat menghasilkan (menginduksi) medan magnet. Usulan Maxwell ini kemudian menjadi hukum ketiga yang menghubungkan antara kelistrikan dan kemagnetan.

James Clerk Maxwell peletak dasar teori gelombang elektromagnetik

James Clerk Maxwell peletak dasar teori gelombang elektromagnetik

Jadi, prinsip ketiga adalah medan listrik yang berubah-ubah terhadap waktu dapat menghasilkan medan magnet. Prinsip ketiga ini yang dikemukakan oleh Maxwell pada dasarnya merupakan pengembangan dari rumusan hukum Ampere. Oleh karena itu, prinsip ini dikenal dengan nama Hukum Ampere-Maxwell.

Dari ketiga prinsip dasar kelistrikan dan kemagnetan di atas, Maxwell melihat adanya suatu pola dasar. Medan magnet yang berubah terhadap waktu dapat membangkitkan medan listrik yang juga berubah-ubah terhadap waktu, dan medan listrik yang berubah terhadap waktu juga dapat menghasilkan medan magnet. Jika proses ini berlangsung secara kontinu maka akan dihasilkan medan magnet dan medan listrik secara kontinu. Jika medan magnet dan medan listrik ini secara serempak merambat (menyebar) di dalam ruang ke segala arah maka ini merupakan gejala gelombang. Gelombang semacam ini disebut gelombang elektromagnetik karena terdiri dari medan listrik dan medan magnet yang merambat dalam ruang.

Pada mulanya gelombang elektromagnetik masih berupa ramalan dari Maxwell yang dengan intuisinya mampu melihat adanya pola dasar dalam kelistrikan dan kemagnetan, sebagaimana telah dibahas di atas. Kenyataan ini menjadikan J C Maxwell dianggap sebagai penemu dan perumus dasar-dasar gelombang elektromagnetik.

Teori Maxwell tentang listrik dan magnet meramalkan adanya gelombang elektromgnetik

Teori Maxwell tentang listrik dan magnet meramalkan adanya gelombang elektromgnetik

Ramalan Maxwell tentang gelombang elektromagnetik ternyata benar-benar terbukti. Adalah Heinrich Hertz yang membuktikan adanya gelombang elektromagnetik melalui eksperimennya. Eksperimen Hertz sendiri berupa pembangkitan gelombang elektromagnetik dari sebuah dipol listrik (dua kutub bermuatan listrik dengan muatan yang berbeda, positif dan negatif yang berdekatan) sebagai pemancar dan dipol listrik lain sebagai penerima. Antena pemancar dan penerima yang ada saat ini menggunakan prinsip seperti ini.

diagram skematik eksperimen Hertz

diagram skematik eksperimen Hertz

Melalui eksperimennya ini Hertz berhasil membangkitkan gelombang elektromagnetik dan terdeteksi oleh bagian penerimanya. Eksperimen ini berhasil membuktikan bahwa gelombang elektromagnetik yang awalnya hanya berupa rumusan teoritis dari Maxwell, benar-benar ada sekaligus mengukuhkan teori Maxwell tentang gelombang elektromagnetik.